Надежное хранение информации. На каких носителях хранить электронные данные? Средства долговременного хранения и накопления данных

«Вариант 1 Для долговременного хранения информации служит: оперативная память; внешняя память; дисковод; процессор. В операционной системе...»

Вариант 1

оперативная память;

внешняя память;

дисковод;

процессор.

вопросительный знак (?)

время создания файла;

объем файла;

место создания файла.

Электронная таблица – это:

прикладная программа для обработки кодовых таблиц;

прикладная программа для обработки структурированных в виде таблицы данных;

устройство компьютера, управляющее его ресурсами при обработке табличных данных;

системная программа, управляющая ресурсами компьютера при обработке таблиц.

Драйвер – это

устройство длительного хранения информации

программа, управляющая конкретным внешним устройством

устройство ввода

устройство вывода

Какое количество информации содержит сообщение о том, что один из 16 студентов группы является победителем олимпиады по информатике?

1024 байта.

ОТМЕТИТЬ ПРАВИЛЬНЫЙ ОТВЕТ



Mysterious Brain Rescue

Master Boot Record

437451552070Ответ:

A) 12; B) 16; C) 8; D) 10

A) 12; B) 16; C) 8; D) 10

A) 43; B) 61; C) 49; D) 56

Вариант 2

Основной элементной базой ЭВМ первого поколения являются:

полупроводники;

электромеханические схемы;

сверхбольшие интегральные схемы;

электровакуумные лампы.

В каком устройстве ПК производится обработка информации?

внешняя память

процессор

Устройство ввода информации с листа бумаги называется:

Для долговременного хранения информации служит:

оперативная память;

внешняя память;

дисковод;

процессор.

В операционной системе Windows собственное имя файла не может содержать символ

вопросительный знак (?)

запятую (,)точку (.)знак сложения (+)Расширение имени файла, как правило, характеризует:

тип информации, содержащийся в файле;

время создания файла;

объем файла;

место создания файла.

ОТМЕТИТЬ ПРАВИЛЬНЫЙ ОТВЕТ

7. Что объединяет эти картинки?

A) логотипы популярных браузеров

B) логотипы операционных систем

C) логотипы графических редакторов



D) логотипы текстовых редакторов

8. Отметьте формат векторного рисунка.

А) *gif; В) *cdr; С) *jpeg; D) *png9. Информационная ёмкость – это …

максимально возможный объём данных, который может сохранить данное устройство памяти

интервал времени от момента посылки запроса информации до момента получения результата на шине данных

количество передаваемых за единицу времени данных после непосредственного начала операции чтения (т.е. без учёта подготовительной стадии)

10. Какая из перечисленных программ является антивирусной?

A) Konqueror; B) Nero; C) Avira; D) FineReader11. К какому типу данных относится char на языке Pascal?

А). Логический; В). Целый; С). Символьный; D). Перечисляемый

12. Что НЕ относится к устройствам ввода?

A) сенсорная панель; B) сканер; C) микрофон; D) плоттер

13. Что означает сокращение MBR?

Mysterious Brain Rescue

Master Boot Record

Main Basic ReloadMinimal Be Restructure

4787900335915Выбрать ответ:

A) 12; B) 16; C) 8; D) 10

00Выбрать ответ:

A) 12; B) 16; C) 8; D) 10

14. В алгоритме, записанном ниже, используются целочисленные переменные k и m. Определите значение переменной m после исполнения данного алгоритма:

15. Как называется наука о методах обеспечения конфиденциальности, целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства?

A)криптоника; B)криптография; C) криптоанализ; D) криптология16. Определите необходимый объём видеопамяти для графического режима с разрешением 1024x768 точек и глубиной цветопередачи 16 бит.

A) 1 574 Кбайт; B) 1 536 байт; C) 1 536 Кбайт; D) 1 574 Мбайт

17. Расширения *aifc, *aac, *ogg имеют:

А) видеофайлы; B) графические файлы; C) аудиофайлы; D) текстовые файлы

18. На парковке стоят только легковые автомобили и мотоциклы. Всего на парковке было 50х транспортных средств, из которых: 32х легковые автомобили и 15х мотоциклы. После прибыло еще 11х легковых автомобилей. Сколько всего транспортных средств стало на парковке в десятичной системе счисления?

A) 43; B) 61; C) 49; D) 56

1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ПО РАЗДЕЛАМ И ТЕМАМ

2 семестр 1курс

Компьютерные презентации. Основные требования при создании презентации

Какие параметры выбирают одновременно для всех слайдов презентации

Какие параметры выбирают индивидуально для каждого слайда презентации

Для чего необходим дизайн в презентациях. Как выбрать ФОН для слайда

Что определяет МАКЕТ слайда. Какие макеты чаще используются.

Чем отличатся анимация и звук в ПРОЦЕССЕ СМЕНЫ СЛАЙДОВ от анимации и звука в ПРОЦЕССЕ ПОЯВЛЕНИЯ ОБЪЕКТОВ на слайде.

Какими способами можно организовать переходы между слайдами в интерактивной презентации

Назначение текстовых редакторов. Перечислите, какие текстовые редакторы используются в работе с документами.

Какая операция в текстовом редакторе обеспечивает автоматический поиск и замену слов во всем документе.

Каким цветом выделяется орфографическая ошибка в тексте, а каким синтаксическая

Что необходимо установить перед выводом документа на печать

Что является основным объектом в тексте. Что такое шрифт Какие шрифты различаются в компьютере по способу представления

Какие шрифты легче воспринимаются глазом. Что является единицей измерения размера шрифта

Данные каких типов могут храниться в ячейках электронной таблицы Excel. Преимущества таблиц Excel перед обычными таблицами..Чем определяется адрес ячейки в электронной таблице. Что нельзя удалить в электронной таблице Excel.

Чем вызвано создание компьютерных сетей. Что представляют сети пользователям

ЛОКАЛЬНЫЕ сети. ТОПОЛОГИЯ СЕТЕЙ

Что из себя представляет сеть на основе сервера

С ПОМОЩЬЮ ЧЕГО производится соединение компьютеров

ГЛОБАЛЬНАЯ компьютерная сеть ИНТЕРНЕТ, ИХ КЛАССИФИКАЦИЯ

Что обеспечивает надежность и устойчивость функционирования ГЛОБАЛЬНОЙ компьютерной сети. Что такое IP-адрес

Что обеспечивают Интернет-провайдеры. Перечислите СПОСОБЫ подключения к Интернету. От чего зависит реальная скорость подключения к Интернету.

Ответы к заданиям

Номер вопроса

Вариант 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Вариант 1 B A A B B C D B A C C D B A B C C A

Вариант 2 D C C B A A D B A C C D B A B C C A

Похожие работы:

«Белорусский государственный университет информатики и радиоэлектроники Кафедра химии Отчет по лабораторной работе № 6 Химическое травление полупроводников. Определение плотности дислокацийВыполнил: Студент 1-го курса Группы №_ _Проверил: Молочко А.П. Минск 2016 Экспериментальная часть Цель работы: провести полирующее и селективн...»

«Пример акта внедрения в производство "УТВЕРЖДАЮ" Генеральный директор ОАО "БелВТИ" А.В.Кирпичник _._.2013 М.П. Утверждаю Проректор по учебной работе и социальным вопросам БГУИР _ А.А.Хмыль_._.2013 М.П.АКТ ВНЕДРЕНИЯ (ИСПОЛЬЗОВАНИЯ) результатов научно-исс...»

У каждого пользователя есть информация, которую хотелось бы сохранить на длительное время. Фото, видео, аудио или важные документы. Однако, просто записать их на жесткий диск и не трогать недостаточно. Постепенно накопитель изнашивается, к тому же не стоит забывать про сбои или повреждения. В данной статье будет описано то, как правильно хранить информацию для лучшей сохранности.

Общие принципы безопасного хранения информации

  • Необходимо делать несколько копий . Действительно важные файлы лучше записать на несколько устройств или накопителей, что позволит с большей вероятностью сохраниться хоть одному носителю в случае непредвиденных обстоятельств.
  • Данные лучше хранить в широко распространенных и известных форматах . Если это текстовый документ, то лучше сохранить его в формате txt, чем в каком-то экзотическом. Вероятность того, что через десяток лет будут программы способные открыть самый распространенный формат гораздо выше, чем если это будет файл, который способна запускать лишь пара утилит.
  • Чем целее данные, тем лучше. Не стоит зашифровать , архивировать или сжимать данные. В случае небольшого повреждения обычного файла есть хорошие шансы на его запуск, а в случае повреждения архивированного или шифрованного шансы небольшие.
  • Также не стоит забывать проверять свои данные время от времени, если носителю много лет или есть сомнения в его целостности, то лучше будет пересохранить информацию на новый накопитель, также хорошей идеей будет использование новых устройств и типов записи.

Использование традиционных накопителей

В этом разделе будут описаны стандартные варианты хранения информации, а также преимущества и недостатки каждого из них.

  1. CD, DVD, Blu-Ray теоретически, эти накопители способны хранится очень долго, также, как и информация на них. Однако, здесь существует множество нюансов, поэтому этот способ будет рассмотрен более подробно ниже.
  2. Облачные хранилища . В них данные могут хранится неограниченно долго. Это в идеальном мире. Фактически, они будут там пока это выгодно компаниям и приносит им выгоду. К тому же, судя по лицензионным соглашениям, никакой ответственности за сохранение информации они не несут. К тому же, пользователь может просто забыть пароль или его могут взломать. Так что нет никакой гарантии, что здесь эта информации будет сохранена надежнее, чем на обычном жестком диске.

Используем оптические диски

Этот способ является самым надежным в плане долговечности, некоторые производители называют сроки чуть ли не в сотню лет. Однако многие сталкивались с такой ситуацией, что болванка может не читаться не то, что через пару лет, а даже через несколько месяцев. Этому есть несколько причин.

На что обратить внимание при выборе диска

В дисках очень важны материалы из которых изготовлен отражающий и записываемый слои, а также остальные части диска.

Записываемый слой в идеале должен состоять из фталоцианина , а отражающий слой из золота или серебра. Хотя производители могут подобрать и другое сочетание веществ. К тому же пользователи такие тонкости не нужны. Все, что нужно знать — это то, что диски для длительного хранения данных имеют в своем названии отсылку к архивам или прямо называются архивными, например, DVD-R Mitsui MAM-A Gold Archival или Verbatim UltraLife Gold Archival . Стоят они гораздо дороже и найти их в магазинах вряд ли получится, придется заказывать в других странах. К тому же, стоят они гораздо дороже обычных дисков, зато и хранят информацию дольше, до 100 лет.

Из доступных вариантов можно приобрести Verbatim или Sony , произведенные в Тайване.

Далее представлена диаграмма, которая отображают количество ошибок считывания информации с диска в зависимости от времени, проведенного им в агрессивной среде.

Millenniata M-Disk

Как видно из графика, эта фирма выпускает одни из надежнейших дисков. Фактически, большая часть отличий состоит в материале и способе записи. На этих носителях используется не органический, а стеклоуглеродный слой для записи информации.

При этом, вместо смены цвета, как делается при записи обычных оптических накопителей, здесь в прямом смысле происходит прожиг материала.

Это позволяет данным хранится гораздо дольше, и они меньше зависят от внешних факторов. Можно найти множество роликов в интернете, в которых над этими дисками издеваются как могут, а они продолжают работать. Так что, если информация действительно будет хранится долгое время, стоит задумать о приобретении дисков этого производителя.

Средства долговременного хранения и накопления данных (внешнее запоминающие устройство) обеспечивают запись и чтение больших массивов информации, в качестве которых могут использоваться: тексты программ на языках высокого уровня, программы в машинных кодах, файлы с данными и т.д. В качестве внешних запоминающих устройств в ПЭВМ в основном используются накопители на гибких магнитных дисках (НГМД) и накопители на жестких магнитных дисках (НМД) типа "винчестер".

Накопители на гибких магнитных дисках являются основными устройствами внешней памяти ПЭВМ. Носителем информации в НГМД служит гибкий магнитный диск (ГМД), изготовленный из синтетической пленки, покрытой износоустойчивым ферролаком. Информация на ГМД размещается в последовательном коде на концентрических окружностях (дорожках), каждая из которых разбита на секторы. Сектор является единицей обмена данными между ОП и НГМД. В одном секторе может размещаться 128,256, 512 или 1024 байт данных. В ПЭВМ перечисленные форматы данных можно устанавливать программно.

ГМД имеет установочное отверстие (УО) для фиксации диска в дисководе и индексное отверстие (ИО) для идентификации начала дорожек. Для защиты от неблагоприятных воздействий внешней среды ГМД помещается в прямоугольный конверт, имеющий прорезь для подвода магнитных головок (ПМГ), прорезь индексного отверстия (ПИО) и отверстие крепления ГМД в дисководе (ОКД). Информация, которая записывается на ГМД, по своему назначению подразделяется на служебную и рабочую. Служебная информация используется для управления и синхронизации работы НГМД. Она в свою очередь подразделяется на информацию, индентефицирующую дорожку, и информацию, индентефицирующую сектор. Рабочая информация представляет данные пользователя.

Емкость НГМД в ПЭВМ составляет 160 Кбайт и более в зависимости от количества магнитных головок в накопителе и плотности записи данных на ГМД. Существуют следующие разновидности НГМД: с одинарной и двойной плотностью записи; односторонние - с одной и двусторонние - с двумя МГ. В двусторонних НГМД для записи и чтения данных можно использовать обе поверхности ГМД. В соответствии с разновидностями НГМД принята и соответствующая маркировка ГМД: SS - односторонний диск одинарной плотности; SD - односторонний диск двойной плотности; DD - двусторонний диск двойной плотности.

Наряду с НГМД развитые модели ПЭВМ комплектуются также накопителями на магнитных дисках типа "винчестер". Их отличительные особенности -герметично закрытая единая конструкция диска, магнитных головок чтение-записи и их привода, небольшой зазор (по сравнению с обычными НДМ) между магнитными головками и поверхностью диска(0,5 мкм), небольшое давление прижима магнитной головки (10 г по сравнению с 350 г в обычных НМД), малая толщина магнитного диска.


Герметично закрытая конструкция увеличивает в 2 раза надежность работы по сравнению с обычным НМД. Уменьшение зазора между поверхностью диска и магнитными головками значительно увеличивает продольную и поперечную плотность записи. НМД типа "винчестер" считаются третьем поколением НМД и имеют близкие к предельным характеристики. Так, НМД диаметром 356 мм на одной поверхности может включать до 1770 дорожек (1300 Мбайт информации).

Разработка модемов.

Первые системы обработки информации, в которых для подключения абонентов к ЭВМ применялась телеграфная аппаратура, были созданы в начале 60-х годов. В таких системах передача велась с применением обычной телеграфной аппаратуры при относительно низких скоростях, не превышающих 110 бит/сек.

Следующим этапом в развитии систем передачи данных явилась разработка модемов, обеспечивающих возможность передачи двоичной информации по телефонным линиям.

Модем - электронное устройство, наделенное функциями модулирования данных на передающем конце линии связи и демодулирования на принимающем конце линии связи. Модулирование сигнала означает преобразование сигнала к виду, позволяющему передавать его на дальние расстояния. Например, типичный акустический модем оборудован двумя чашеобразными рецепторами, на которые кладется телефонная трубка. Модем подсоединен к компьютеру, от которого принимает информацию в виде последовательности двоичных сигналов - битов. Однако телефон предназначен для передачи звуковой частоты, а двоичные биты - это всего лишь электрические импульсы, не слышные человеческому уху. Поэтому электрические импульсы предварительно преобразуются в модеме в сигналы звуковой частоты, а затем передаются по телефонным линиям. На другом конце происходит обратный процесс переводы сигналов звуковой частоты в последовательность двоичных электрических импульсов - битов, пригодных для работы компьютера. Такие преобразования называются модулированием и демодулированием, описанное устройство является всего лишь простейшим модемом.

Первые образцы модемов имели относительно низкую скорость передачи данных, однако в дальнейшем скорость передачи по коммутируемым каналам возросла до 1200 бит/сек в дуплексном режиме - режиме одновременного ввода и вывода информации или до 9600 бит/сек в полудуплексном режиме - режиме предназначенном для поочередного ввода и вывода информации.

С середины 60-х годов начинается интенсивное развитие специализированных систем обработки информации, базирующихся на выделенных каналах. Такие системы создаются для обеспечения потребностей отдельных организаций, владеющих как вычислительными ресурсами, так и каналами связи. Однако эксплуатация таких систем показала, что применяемые в них вычислительные ресурсы и каналы связи используются недостаточно эффективно, системы оказываются дорогими и мало приспособленными к изменяющимся условиям. Выявилась потребность многих пользователей обращаться к мощным вычислительным машинам на относительно короткие промежутки времени.

Все это привело к разработке систем передачи данных коллективного пользования, в которых многие пользователи могут через сети связи общего пользования подключаться по своему выбору к различным средствам обработки информации.

Клавиатура.

Клавиатура важное и универсальное устройство ввода информации в компьютер.

По расположению клавиш настольные клавиатуры делятся на два основных типа, функционально ничуть не уступающие друг другу. В первом варианте функциональные клавиши располагаются в двух вертикальных рядах, а отдельных группы клавиш управления курсором нет. Всего в такой клавиатуре 84 клавиши.

Второй вариант клавиатуры, которую принято называть усовершенствованной, имеет 101 или 102 клавиши. Клавиатурой такого типа снабжаются сегодня почти все настольные персональные компьютеры. Профессионалы не любят эту клавиатуру из-за того, что к функциональным клавишам приходиться далеко тянуться, в самый верхний ряд клавиш через всю буквенную клавиатуру. Однако количество функциональных клавиш в усовершенствованной клавиатуре не 10, а все 12.

В портативном компьютере клавиатура обычно является встроенной частью конструкции.

Расположение буквенных клавиш на компьютерных клавиатурах стандартно. Сегодня повсеместно применяется стандарт QWERTY -по первым шести латинским буквенным клавишам верхнего ряда. Ему соответствует отечественный стандарт ЙЦУКЕН расположения клавиш кириллицы, практически аналогичный расположению клавиш на пишущей машинке.

Стандартизация в размере и расположении клавиш нужна для того, чтобы пользователь на любой клавиатуре мог без переучивания работать “слепым методом”. Слепой десятипальцевый метод работы является наиболее продуктивным, профессиональным и эффективным. Увы, клавиатура из-за низкой производительности пользователя оказывается сегодня самым “узким местом” быстродействующей вычислительной системы.

Работать с клавиатурой очень просто и наглядно. Чтобы каждому символу клавиатуры поставить в соответствие определенный байт информации, используют специальную таблицу кодов ASCII (American Standart Code for Information Interchange) -американский стандарт кодов для обмена информацией, применяемой на большинстве компьютеров.

После нажатия клавиши клавиатура посылает процессору сигнал прерывания и заставляет процессор приостановить свою работу и переключиться на программу обработки прерывания клавиатуры.

При этом клавиатура в своей собственной специальной памяти запоминает, какая клавиша была нажата (обычно в памяти клавиатуры может храниться до 20 кодов нажатых клавиш, если процессор не успевает ответить на прерывание). После передачи кода нажатой клавиши процессору эта информация из памяти клавиатуры исчезает.

Кроме нажатия клавиатура отмечает также и отпускание каждой клавиши, посылая процессору свой сигнал прерывания с соответствующим кодом.

Ввод символов с клавиатуры осуществляется только в той точке экрана, где располагается курсор. Курсор представляет собой прямоугольник или черту контрастного цвета длинной в один символ.

Специальные клавиши клавиатуры : Специальные (служебные) клавиши выполняют следующие основные функции: {ENTER} -ввод команд на выполнение процессором; {ESC} -отмена какого-либо действия; {TAB} -перемещение курсора на позицию табуляции; {INS} -переключение режима вставки символа в положении курсора в ражим забоя символа в положении курсора;

{DEL} -удаление символа в положении курсора;

{BACKSPACE} -удаление символа слева от курсора;

{HOME} -перемещение курсора в начало текста;

{END} -перемещение курсора в конец текста;

{PGUP} -перемещение курсора на одну экранную страницу по тексту вверх;

{PGDN} -перемещение курсора на одну экранную страницу по тексту вниз;

{ALT} и {CTRL} -при одновременном нажатии этих клавиш с какой-либо другой вызывается изменение действия последней;

{SHIFT} -удержание этой клавиши в нажатом состоянии обеспечивает смену регистра;

{CAPS LOCK} -фиксация/расфиксация регистра заглавных букв;

Пожалуй, мало найдётся в вычислительной технике областей, привлекающих всеобщее внимание, и, вместе с тем, окружённых таким количеством мифов и недопонимания, как длительное архивное хранение данных. Как человек, сталкивавшийся в своей профессиональной практике с актуализацией данных многолетней давности и с организацией долговременных архивов, рискну также высказаться на этот счёт.

Для тех, кому интересно более детальное обсуждение вопроса, предназначен дальнейший текст.

Итак, переход к безбумажной информатике, о необходимости которого столько говорили большевики, свершился. Объём данных на цифровых носителях удваивается каждые два года. Мало кто из современной молодёжи заботится распечатывать интересные тексты или изображения (сам я, относясь к среднему возрасту, тоже пренебрегаю бумагой, уже практически разучился писать от руки, и предпочитаю скачать книгу из интернет-библиотеки на смартфон, нежели сходить за её бумажной версией к шкафу в соседней комнате). Но, к сожалению, цифровые удобства имеют и оборотную сторону, заключающуюся в проблеме долговременного хранения.

Говоря о долговременном хранении, я подразумеваю горизонт планирования от 25 до 100 лет, то есть такой временной период, который позволит современному человеку, сохранив какую-то частную информацию в молодости, затем иметь возможность вернуться к ней на протяжении своей жизни, а то и передать потомкам (к вопросу о вынесенном в заголовок примере с прабабушкиным селфи). Для бизнеса такое долговременное хранение имеет более узкоспециальное значение, поскольку очень немногие бизнес-процессы работают с данными на подобных временных периодах (хотя организации с такими процессами, безусловно, существуют и обычно отчётливо осознают свою специфику).

В первом приближении, можно выделить три уровня рассмотрения данной проблемы, внимание к которым широкой публики убывает от начала к концу списка.

1. Физическая сохранность носителей и удельная стоимость хранения.

Это наиболее широко известный уровень рассмотрения, которым и ограничиваются многие публикации. Не будем переливать из пустого в порожнее и повторять общеизвестные вещи, и вкратце резюмируем, что на сегодняшний день в повседневной пользовательской практике используются три категории архивных носителей:

– Оптические диски (CD, DVD, BD и т.п.) и флеш-накопители. Принято считать, что данные на таких носителях могут разрушаться через несколько лет, и, во всяком случае, через 25 лет её, скорее всего, вряд ли удастся прочитать.

– Магнитные носители (жёсткие диски и ленты). Тут имеется выход на большой флейм между сторонниками дисков и лент, в котором, вкратце говоря, дисковики упрекают ленточников в экзотичности, низкой скорости произвольного доступа и высокой стоимости устройств чтения-записи, а ленточники упрекают дисковиков в уязвимости носителей, высоком энергопотреблении и высокой удельной стоимости хранения для больших объёмов данных. Не вдаваясь в справедливость тех или иных аргументов и контраргументов в диско-ленточной войне, отметим, что архивные магнитные носители в настоящее время зачастую имеют заявленное время сохранности не менее 30 лет, хотя, конечно, это число получено путём экстраполяции результатов интенсивных тестов, а не путём натурного 30-летнего наблюдения.

– Сетевые архивы. Тут идея состоит в том, чтобы перепоручить хранение своих данных специально обученным людям в специально уполномоченных фирмах, а самому рассматривать такое сетевое хранилище как чёрный ящик с интерфейсом в виде интернет-сервиса. Плюсом данного решения является то, что, несомненно, профессионально предоставляющие подобные услуги фирмы способны гораздо лучше позаботиться о сохранности данных, чем рядовой пользователь (причём делать это потенциально неограниченно долго), а заодно и обеспечить низкую стоимость хранения за счёт масштабного эффекта. Минусом являются не зависящие от пользователя риски. Основным риском для долговременного хранения информации в сетевом архиве является внезапная ликвидация бизнеса предоставляющей услугу фирмы, от чего, к сожалению, никто не застрахован. Дополнительным риском является потенциально возможное в будущем установление органами различных государств и интернет-провайдерами пограничных, контентных, форматных или иных ограничений на передачу информации через сеть Интернет, которые могут сделать невозможным доступ к удалённому архиву.

Итак, рассуждая умеренно пессимистично, можно прийти к выводу, что физическая сохранность данных в настоящее время может быть обеспечена с контролируемыми рисками примерно на 30 лет вперёд.

2. Техническая совместимость носителей.

Этот вопрос рассматривается гораздо реже. Давайте, воспользовавшись полученной ранее оценкой физической сохранности, проведём мысленный эксперимент и прикинем, на какой носитель могла бы записать свои цифровые данные даже не моя прабабушка, а всего лишь моя мама 30 лет назад.

Итак, 30 лет назад шёл 1986 год. В зависимости от своих технических предпочтений, пользователь того времени мог бы счесть наиболее заслуживающим доверия носителем для сохранения данных: 9-дорожечную магнитную ленту большого компьютера; широко используемые на персоналках 5- или 8- дюймовые дискеты; или новейшую по тем временам 800-килобайтную 3-дюймовую дискету для дисковода фирмы Sony от компьютера Macintosh (несовместимую с более поздними 3-дюймовыми дисководами на 1.44 мегабайта). Даже предположив идеальную физическую сохранность носителей, чтение в наше время с любого из них, конечно, возможно, но обойдётся в значительные затраты времени и денег, с которыми вряд ли кто станет связываться ради маминого селфи. Ещё через 30 лет технологии чтения этих носителей, вероятно, будут окончательно утрачены.

Может быть, это только 30 лет назад из-за младенчества вычислительной техники всё было так плохо, а сегодня мы свободны от этой проблемы? Давайте посмотрим на современные носители информации.

В качестве долговременного архивного носителя информации в настоящее время чётко позиционируются магнитные ленты стандарта LTO. Мир LTO устроен таким образом, что каждые 2-3 года выпускается новое поколение стандарта, отличающееся примерно удвоенной ёмкостью, и выпускается оборудование под это поколение (сейчас действующим стандартом является LTO-7). Однако, стандарт LTO регламентирует (а общепринятая практика производителей обеспечивает) совместимость стримеров LTO с носителями для чтения только на два поколения назад, а для записи – на одно поколение. Это значит, что современный стример LTO-7 способен читать только кассеты LTO-7, LTO-6 или LTO-5, а современная кассета LTO-7, будучи записана сегодня, окажется несовместимой со стримерами LTO-10, появление которых можно прогнозировать примерно на 2022 год. Уже через 10 лет (в 2026 году) современная кассета не будет читаться ни одним имеющимся на рынке устройством. В этом плане, гарантии 30-летней сохранности самой кассеты носят несколько романтический характер.

Допустим, мы встанем на сторону дисковиков и запишем информацию на современный жёсткий диск SATA или SAS. Этим стандартам интерфейса и так уже более 10 лет, и крайне маловероятно, что они продержатся ещё хотя бы 10. То же самое относится к USB в современном виде. Отсутствие фактической почвы делает все рассуждения об отдалённом будущем физических интерфейсов крайне спекулятивными, но можно предположить, например, что через 10-20 лет интерфейсы дисковых устройств вполне могут стать оптическими, и в таком случае будут несовместимы с современными устройствами уже на уровне среды передачи данных.

Исходя из вышесказанного, крайне маловероятно, чтобы современный магнитный носитель мог быть распознан каким-либо штатным компьютерным устройством через 30 лет.

Хранение данных в сетевом архиве позволяет переложить указанные проблемы на специально обученных людей, но остаётся имеющим указанные в предыдущем разделе риски. Уместно напомнить, что большинство лидеров компьютерного рынка 30-летней давности к настоящему времени ликвидировалось, за несколькими исключениями вроде IBM, Apple и Microsoft, которые, однако, с тех пор очень значительно поменяли сферу деятельности.

3. Совместимость форматов данных.

Об этом вопросе пишут совсем редко.

Так как 30 лет назад всё-таки на самом деле не было цифровых селфи, то давайте представим, что нам из 1986 года попал простой текстовый электронный документ, и что нам удалось удалось решить все технические проблемы и его записать в файл современного компьютера.

Ввиду большого разнообразия компьютерного мира в 1986 году, вариантов тут может быть очень много, поэтому рассмотрим только некоторые:

– от пользователя мейнфрейма 1986 года нам на диск может попасть образ виртуальной колоды перфокарт с фиксированными 80-символьными записями в кодировке EBCDIC (ДКОИ);

– от пользователя Macintosh мы получим документ ClarisWorks;

– от пользователя PC мы получим, например, документ досовского текстового редактора ChiWriter или WordPerfect, хотя при удаче это может оказаться и обычный текстовый файл;

– и только с пользователем Unix нам практически точно повезёт, и мы, вероятно, получим от него обычный читаемый текстовый файл (в кодировке русского языка koi8-r или ещё похуже).

Это ситуация с наиболее банальным видом документа, простым текстом. Если же представить, что к нам попал, например, чертёж из 1986 года, можно практически со стопроцентной уверенностью утверждать, что никак интерпретировать этот файл мы сейчас не сможем.

На чём же базируется наша неявная уверенность, что мы сможем, вырвавшись на полчасика из обьятий Альцгеймера, показывать своим скучающим внукам невнятные фотки из отпуска 2016 года? Допустим, при известном оптимизме можно представить, что формат jpeg, ввиду его огромной распространённости в современной жизни, можно будет как-то отконвертировать в форматы изображений, которые будут приняты в светлом альцгеймеровом будущем (хотя исторических прецедентов такого длительного срока жизни формата не было). Но уж точно это не будет относиться ни к raw-форматам фотокамер, ни к форматам офисных документов вроде doc/docx, ни к электронным книгам fb2/epub и т.д., просто из-за того, что нет субъекта, имеющего цель и возможность обепечить неограниченную совместимость такого формата.

4. Что же делать?

Поддержание цифрового архива в актуальном состоянии является достаточно сложной и трудозатратной деятельностью, независимо от его назначения и используемых технических средств. Эта деятельность должна включать полный пересмотр архива каждые несколько лет, с переносом всего его содержимого на новые носители данных, а также, при необходимости, конвертированием каждого устаревающего по формату документа в новый, актуальный формат.

Можно допустить, что, поскольку мало кто как из частных пользователей, так и из юридических лиц возьмёт на себя труд заниматься такими вещами, то мы, в таком случае, находимся на пороге нового этапа развития человеческого общества, которое будет характеризоваться отдельными чертами возврата к дописьменному состоянию, когда достоверные данные о личном и общественном прошлом в большинстве своём станут утрачиваться за время жизни одного поколения, а оставшиеся немногие актуальные цифровые архивы станет достаточно легко фальсифицировать ввиду значительной степени их централизации.

На этом лирическое отступление можно закончить, а (банальным) практическим выводом может являться то, что ведение любого архива требует активных занятий по поддержанию актуальности составляющих его данных, а не только пассивного сбрасывания файлов в информационную кучу. Люди, которые занимаются таким осознанным ведением архивов, в том числе и в частной жизни, существуют и вполне известны, и ничто не мешает присоединиться к их практикам.

А селфи для правнуков лучше всё-таки на всякий случай напечатать на фотобумаге.

А) оперативная память. Б) процессор. В) внешняя память
2. При отключении компьютера от сети информациия:
А) исчезает из оперативной памяти
Б) исчезает из постоянного запоминающего устройства
В) стирается на магнитном диске
3. В каждой ячейке оперативной памяти может храниться двоичный код длиной...
А) 2 знака б) 8 знаков в) 4 знака
4. Энергозависимым видом памяти является:
А) flash-память б) CD-диск в) жесткий диск
5. К внутренней памяти компьютера относится:
А) флэш-память б) лазерный диск в) оперативная память

1. Компьютер это -

электронное вычислительное устройство для обработки чисел;
устройство для хранения информации любого вида;
многофункциональное электронное устройство для работы с информацией;
устройство для обработки аналоговых сигналов.
2. Производительность работы компьютера (быстрота выполнения операций) зависит от:
размера экрана монитора;
тактовый частоты процессора;
напряжения питания;
быстроты нажатия на клавиши;
объема обрабатываемой информации.
3. Тактовая частота процессора - это:
число двоичных операций, совершаемых процессором в единицу времени;
количество тактов, выполняемых процессором в единицу времени;
число возможных обращений процессора к оперативной памяти в единицу времени;
скорость обмена информацией между процессором и устройством ввода/вывода;
скорость обмена информацией между процессором и ПЗУ.
4. Манипулятор "мышь" - это устройство:
ввода информации;
модуляции и демодуляции;
считывание информации;
для подключения принтера к компьютеру.
5. Постоянное запоминающее устройство служит для:
хранения программы пользователя во время работы;
записи особо ценных прикладных программ;
хранения постоянно используемых программ;
хранение программ начальной загрузки компьютера и тестирование его узлов;
постоянно хранения особо ценных документов.
6. Для долговременного хранения информации служит:
оперативная память;
процессор;
магнитный диск;
дисковод.
7. Хранение информации на внешних носителях отличается от хранения информации в оперативной памяти:
тем, что на внешних носителях информация может хранится после отключения питания компьютера;
объемом хранения информации;
возможность защиты информации;
способами доступа к хранимой информации.
8. Во время исполнения прикладная программ хранится:
в видеопамяти;
в процессоре;
в оперативной памяти;
в ПЗУ.
9. При отключении компьютера информация стирается:
из оперативной памяти;
из ПЗУ;
на магнитном диске;
на компакт-диске.
10. Привод гибких дисков - это устройство для:
обработки команд исполняемой программы;
чтения/записи данных с внешнего носителя;
хранения команд исполняемой программы;
долговременного хранения информации.
11. Для подключения компьютера к телефонной сети используется:
модем;
плоттер;
сканер;
принтер;
монитор.
12. Программное управление работой компьютера предполагает:
необходимость использования операционной системы для синхронной работы аппаратных средств;
выполнение компьютером серии команд без участия пользователя;
двоичное кодирование данных в компьютере;
использование специальных формул для реализации команд в компьютере.
13. Файл - это:
элементарная информационная единица, содержащая последовательность байтов и имеющая уникальное имя;
объект, характеризующихся именем, значением и типом;
совокупность индексированных переменных;
совокупность фактов и правил.
14. Расширение файла, как правило, характеризует:
время создания файла;
объем файла;
место, занимаемое файлом на диске;
тип информации, содержащейся в файле;
место создания файла.
15. Полный путь файлу: c:\books\raskaz.txt. Каково имя файла?
books\raskaz;.
raskaz.txt;
books\raskaz.txt;
txt.
16. Операционная система это -
совокупность основных устройств компьютера;
система программирования на языке низкого уровня;
программная среда, определяющая интерфейс пользователя;
совокупность программ, используемых для операций с документами;
программ для уничтожения компьютерных вирусов.
17. Программы сопряжения устройств компьютера называются:
загрузчиками;
драйверами;
трансляторами;
интерпретаторами;
компиляторами.
18. Системная дискета необходима для:
для аварийной загрузки операционной системы;
систематизации файлов;
хранения важных файлов;
лечения компьютера от вирусов.
19. Какое устройство обладает наибольшей скоростью обмена информацией:
CD-ROM дисковод;
жесткий диск;
дисковод для гибких магнитных дисков;
оперативная память;
регистры процессора?

1. Какие из перечисленных ниже характеристик относятся к оперативной, а какие – к внешней памяти? а) Является

энергозависимой.

д) Более быстрый доступ.

ж) Более медленный доступ.

2. Какой объём памяти в байтах будет занимать следующий двоичный

3. Текст объёмом 1024 бита располагается в оперативной памяти , начиная с байта с номером 10 . Каков будет адрес последнего байта

4. Перечислите не менее пяти известных вам устройств внешней памяти.

5. В чём отличие дисков CD - ROM , CD - RW и CD - R ?

Срочно нужно. Очень. 1. Какие из перечисленных ниже характеристик относятся к оперативной, а какие – к внешней памяти? а)

Является энергозависимой.

б) Её объём измеряется десятками и сотнями гигабайт.

в) Используется для долговременного хранения информации.

г) Её объём измеряется сотнями мегабайт или несколькими гигабайтами.

д) Более быстрый доступ.

е) Используется для временного хранения информации.

ж) Более медленный доступ.

2. Какой объём памяти в байтах будет занимать следующий двоичный код: ? Поясните свой ответ.

3. Текст объёмом 1024 бита располагается в оперативной памяти, начиная с байта с номером 10. Каков будет адрес последнего байта, который занят данным текстом?

4. Перечислите не менее пяти известных вам устройств внешней памяти.

5. В чём отличие дисков CD-ROM, CD-RW и CD-R?

Домашнее задание №5 Тема: Компьютерная память 1. Какие из перечисленных ниже характеристик относятся к

оперативной , а какие – к внешней памяти?

а) Является энергозависимой.

б) Её объём измеряется десятками и сотнями гигабайт.

в) Используется для долговременного хранения информации.

г) Её объём измеряется сотнями мегабайт или несколькими гигабайтами.

д) Более быстрый доступ.

е) Используется для временного хранения информации.

ж) Более медленный доступ.

2. Какой объём памяти в байтах будет занимать следующий двоичный код: ? Поясните свой ответ.

3. Текст объёмом 1024 бита располагается в оперативной памяти , начиная с байта с номером 10 . Каков будет адрес последнего байта , который занят данным текстом?

4. Перечислите не менее пяти известных вам устройств внешней памяти.